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Abstract
In this paper, we construct quantum theta functions over noncommutative T

d

with general embeddings. Manin has constructed quantum theta functions from
the lattice embedding into vector space × finite group. We extend Manin’s
construction of quantum thetas to the case of general embedding of vector
space × lattice × torus. It turns out that only for the vector space part of
the embedding there exists the holomorphic theta vector, while for the lattice
part there does not. Furthermore, the so-called quantum translations from
embedding into the lattice part become non-additive, while those from the
vector space part are additive.

PACS numbers: 02.30.Tb, 02.40.Gh

1. Introduction

In the quantization of the classical theta function, we encounter two types of objects. One is
the theta vector introduced by Schwarz [1], which is a holomorphic element of a projective
module over unitary quantum torus. The other is the quantum theta function introduced by
Manin [2–5], which is an element of the function ring of quantum torus itself. This is a
natural outcome if we consider the process of quantization, in which commutative physical
observables become operators acting on the states. Namely, classically we have only one type
of objects, observables, and then after quantization we come up with two types of objects,
operators and states. This is exactly what happens here. In the classical case, a set of
specific values of observables constitutes a state, and the classical theta function is just like
a state function. On the other hand, the quantum theta functions and the theta vectors are
the operators and state vectors, respectively, in the quantum case. Manin [4, 5] has shown
that the Rieffel’s algebra-valued inner(scalar) products [6] of theta vectors [7] obtained from
the lattice embedding of the type R

p(×F) for quantum torus satisfy the property of quantum
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theta function that he defined. Here, d = 2p is the dimension of the relevant quantum torus
and F is a finite group. However, it was also shown in [6] that there is another type of lattice
embedding for quantum torus, R

p × Z
q(×F), where the dimension of the relevant quantum

torus is d = 2p + q. Manin has left the construction of the quantum theta function for this
case in question [5].

This type of nonzero q embedding is intimately related to the Morita equivalence over
noncommutative tori [8]. In [9], we investigated the symmetry of quantum torus, restricting
ourselves to the symmetry of the algebra and its module, which is not related to the Morita
equivalence. In that case, we only considered the embeddings with q = 0. However, to
investigate the full symmetry of noncommutative tori including the Morita equivalence, we
need to understand the behavior of modules from nonzero q embeddings.

We have previously constructed the quantum theta function in the latter type of embeddings
that Manin has left in question in the case of noncommutative T

4 [10]. This paper is the
extension of the work in [10] to higher dimensional tori, providing the general proof of the
result of the T

4 case extended to the arbitrary T
d case.

We first try to find the theta vector in the nonzero q embedding, and end up with a
conclusion that the holomorphic theta vector does not exist in a general sense. Then we try
to construct the quantum theta function in this case. Because still there is a possibility that
the Rieffel’s scalar product with an element of non-holomorphic (partially holomorphic only
for the R

p-part) module in the second type of embedding satisfies the required property of
the quantum theta function. Thus, we construct a quantum theta function via Rieffel’s scalar
product with an element of the module in the second type of embedding and find that it satisfies
the requirement of quantum theta function.

The organization of the paper is as follows. In section 2, we construct the modules with
general embeddings for quantum tori. In section 3, we construct the quantum theta functions
evaluating the scalar products of the above obtained modules, and check the required conditions
for the quantum theta function. In section 4, we conclude with discussion.

2. Lattice embedding of quantum torus

We first review the embedding of quantum torus [6] and a canonical construction of the module
with an embedding of the type R

p, of which the four-torus case was done explicitly in [11].
Then we proceed to the case with an embedding of the type R

p × Z
q .

Recall that T
d
θ is a deformed algebra of the algebra of smooth functions on the torus T

d

with the deformation parameter θ , which is a real d × d anti-symmetric matrix. This algebra
is generated by operators U1, . . . , Ud obeying the following relations:

UjUi = e2π iθij UiUj and U ∗
i Ui = UiU

∗
i = 1, i, j = 1, . . . , d.

The above relations define the presentation of the involutive algebra

Ad
θ =

{∑
ai1=...id U

i1
1 . . . U

id
d

∣∣ a = (
ai1...id

) ∈ S(Zd)
}

,

where S(Zd) is the Schwartz space of sequences with rapid decay.
Every projective module over a smooth algebra Ad

θ can be represented by a direct sum of
modules of the form S(Rp ×Z

q ×F), the linear space of Schwartz functions on R
p ×Z

q ×F ,
where 2p+q = d, and F is a finite Abelian group. The module action is specified by operators
on S(Rp × Z

q × F) and the commutation relation of these operators should be matched with
that of elements in Ad

θ .
Recall that there is the dual action of the torus group T

d on Ad
θ which gives a Lie group

homomorphism of T
d into the group of automorphisms of Ad

θ . Its infinitesimal form generates

2
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a homomorphism of the Lie algebra L of T
d into the Lie algebra of derivations of Ad

θ . Note
that the Lie algebra L is Abelian and is isomorphic to R

d . Let δ : L → Der(Ad
θ ) be the

homomorphism. For each X ∈ L, δ(X) := δX is a derivation, i.e., for u, v ∈ Ad
θ ,

δX(uv) = δX(u)v + uδX(v). (1)

Derivations corresponding to the generators {e1, . . . , ed} of L will be denoted by δ1, . . . , δd .
For the generators Ui’s of T

d
θ , it has the following property:

δi(Uj ) = 2π iδijUj . (2)

Let D be a lattice in G = M × M̂ , where M = R
p × Z

q × F , and M̂ is its dual. Let � be an
embedding map such that D is the image of Z

d under the map �. This determines a projective
module to be denoted by E [6]. If E is a projective Ad

θ -module, a connection ∇ on E is a linear
map from E to E ⊗ L∗ such that for all X ∈ L,

∇X(ξu) = (∇Xξ)u + ξδX(u), ξ ∈ E, u ∈ Ad
θ . (3)

It is easy to see that

[∇i , Uj ] = 2π iδijUj . (4)

In the Heisenberg representation, the operators are defined by

U(m,ŝ)f (r) = e2π i〈r,ŝ〉f (r + m) (5)

for (m, ŝ) ∈ D, r ∈ M.

Now, we proceed to the construction of the module, first for the embedding with the type
M = R

p, then with the type M = R
p × Z

q . Here we suppress the finite part for brevity. We
consider the embeddings of canonical forms in the present section, and in the following section
we will further consider the generalization of the result from the canonical embeddings.

For M = R
p with 2p = d, we put the embedding map as follows via proper rearrangement

of the basis,

�irr =
(

� 0
0 I

)
:= (xi,j ), for i, j = 1, . . . , d, (6)

where � and I belong to R
p and R

p∗, respectively, and are given by p × p diagonal matrices
of the type

� = diag(θ1, . . . , θp), I = (δij ), i, j = 1, . . . , p. (7)

Then using expression (5) for the Heisenberg representation, we get

(Ujf )(s1, . . . , sp) := (Uej
f )(�s),

≡ exp

(
2π i

p∑
k=1

skxk+p,j +
p∑

k=1

xk,j xp+k,j

)
f (�s + �xj ),

for j = 1, . . . , 2p,

(8)

where �s = (s1, . . . , sp), �xj = (x1,j , . . . , xp,j ) and �s, �xj ∈ R
p.

This can be redisplayed as

(Ujf )(�s) = f (�s + �θ),

(Uj+pf )(�s) = e2π isj f (�s), for j, k = 1, . . . , p,
(9)

where �θ = (θ1, . . . , θp). One can see that they satisfy

UjUj+p = e2π iθj UjUj+p, (10)

and otherwise UjUk = UkUj .

3
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For the embedding of the type M = R
p × Z

q where 2p + q = d, we put the embedding
map of the canonical form as follows:

�irr =

⎛⎜⎜⎝
� 0 0
0 I 0
0 0 Q

0 0 �

⎞⎟⎟⎠ := (xi,j ), i = 1, . . . , 2p + 2q, j = 1, . . . , 2p + q, (11)

where � and I are the same as before that belong to R
p and R

p∗, respectively, and Q and �

are the q × q matrices that belong to Z
q and T q , respectively. Then, the operators Uj acting

on the space E := S(Rp × Z
q) can be defined via Heisenberg representation (5), and we get

(Ujf )(s1, . . . , sp, n1, . . . nq) := (Uej
f )(�s, �n),

≡ e2π i(
∑p

k=1 skxp+k,j +
∑q

l=1 nlx2p+q+l,j )+π i(
∑p

k=1 xk,j xp+k,j +
∑q

l=1 x2p+l,j x2p+q+l,j )f (�s + �x1j , �n + �x2j ),

for j = 1, . . . , 2p + q, (12)

where �x1j = (x1,j , . . . , xp,j ) and �x2j = (x2p+1,j , . . . , x2p+q,j ) belonging to R
p, Z

q ,
respectively.

3. Quantum thetas

In this section, we first try to construct the theta vector by defining the connection with a
complex structure for the embedding of the type R

p × Z
q . Then, we construct the quantum

theta function following the Manin’s construction.

3.1. Theta vectors

In the previous section, connections on a projective Ad
θ -module satisfies condition (4) and can

be written as

Uj∇i = ∇iUj − 2π iδijUj , for i, j = 1, . . . , 2p + q. (13)

Proposition 1 (Rieffel). Relation (13) is satisfied with the connection ∇j such that

(∇j f )(�s, �n) = −2π i

(
p∑

k=1

Bj,kskf (�s, �n) +
q∑

l=1

Bj,2p+lnlf (�s, �n)

)

+
p∑

k=1

Bj,p+k

∂f

∂sk

(�s, �n), for j = 1, . . . , 2p + q, (14)

where �s = (s1, . . . , sp), �n = (n1, . . . , nq), and the constants Bj,k ∈ R satisfy the following
condition:

p∑
k=1

(Bi,kxk,j + Bi,p+kxp+k,j ) +
q∑

l=1

Bi,2p+lx2p+l,j = δij , i, j = 1, . . . , 2p + q. (15)

Condition (15) says that the matrix B is the inverse matrix of X̃ where X̃ij = (xi,j ) for
i, j = 1, . . . , 2p + q. Namely, the inverse matrix of the upper (2p + q) × (2p + q) part of the
matrix (xi,j ) is the matrix B:

B = X̃−1 and X̃ =
⎛⎝� 0 0

0 I 0
0 0 Q

⎞⎠ , (16)

where �, I,Q are given for the canonical form in (11).
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We say that a noncommutative torus is equipped with a complex structure if the Lie
algebra L mentioned in section 2 is equipped with such a structure. A complex structure on
L can be considered as a decomposition of the complexification L ⊕ iL of L in a direct sum
of two complex conjugate subspace L1,0 and L0,1. We denote by δ̄1, . . . , δ̄d/2, a basis in L0,1.
One can express δ̄α, α = 1, . . . , d/2 in terms of δβ, β = 1, . . . , d which appeared in section
2 as δ̄α = hβ

αδβ , where hβ
α is a complex d

2 × d matrix. A complex structure on a Ad
θ -module E

can be defined as a collection of C-linear operators ∇1, . . . ,∇d/2 on E satisfying

∇α(af ) = a∇α(f ) + δ̄α(a)f, a ∈ Ad
θ , f ∈ E. (17)

A vector f ∈ E is called holomorphic if

∇αf = 0, α = 1, . . . , d/2. (18)

Now, we assume that there exists a complex structure T such that⎛⎜⎝ ∇1

...

∇d/2

⎞⎟⎠ = (
T , I

) ⎛⎜⎝∇1

...

∇d

⎞⎟⎠ , (19)

where T is a d
2 × d

2 complex matrix and I is a d
2 × d

2 unit matrix. In the canonical embedding
(11), the connection ∇β is given by (14) and (16):

⎛⎜⎝∇1

...

∇d

⎞⎟⎠ =
⎛⎝�−1 0 0

0 I 0
0 0 Q−1

⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2π is1

...

−2π isp
∂

∂s1

...
∂

∂sp

−2π in1

...

−2π inq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

If there exists a holomorphic vector f (�s, �n), then the following equation should be satisfied:⎛⎜⎝ ∇1

...

∇d/2

⎞⎟⎠ f = 0. (21)

The above equation can be written as

(T , I )

⎛⎝�−1 0 0
0 I 0
0 0 Q−1

⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2π is1

...

−2π isp
∂

∂s1

...
∂

∂sp

−2π in1

...

−2π inq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f = 0. (22)

5



J. Phys. A: Math. Theor. 41 (2008) 105201 Ee Chang-Young and H Kim

To check the existence condition for the holomorphic vector, we let

(T , I )

⎛⎝�−1 0 0
0 I 0
0 0 Q−1

⎞⎠ := (A,C, F ), (23)

where A and C are the
(
p + q

2

)×p matrices and F is the
(
p + q

2

)×q matrix. Then the required
condition for f is

2π i
p∑

k=1

(Aiksk + Filnl)f =
p∑

k=1

Cik

∂f

∂sk

, for i = 1, . . . ,
d

2
= p +

q

2
. (24)

The only possible function is of the form

f (�s, �n) = exp

⎡⎣2π i

⎛⎝1

2

p∑
j,k=1

sj�jksk +
p∑

k=1

q∑
l=1

Glknlsk

⎞⎠⎤⎦ , (25)

where �t = �. Then condition (24) becomes
p∑

k=1

Cik�kj = Aij , 1 � i � p +
q

2
, 1 � j � p,

p∑
k=1

CikGlk = Fil, 1 � i � p +
q

2
, 1 � l � q.

(26)

In other words,

C� = A and CGt = F. (27)

Combining these two conditions and from (23), we obtain the following relation:

C(�, I,Gt ) = (A,C, F ) = (T , I )

⎛⎝�−1 0 0
0 I 0
0 0 Q−1

⎞⎠ . (28)

Proposition 2. We consider the existence of the holomorphic vector in the canonical
embeddings in three different cases.

(i) For p �= 0, q = 0, there is the unique holomorphic vector with � = T �−1 which is
symmetric and whose imaginary part is positive definite.

(ii) For p �= 0, q �= 0, the holomorphic vector does not exist.
(iii) For p = 0, q �= 0, the only possible one is the delta function at the origin.

Proof. In the case (i), the consistency relation (28) is reduced to

C(�, I) = (A,C) = (T , I )

(
�−1 0
0 I

)
= (T �−1, I ). (29)

Thus one can see immediately that C = I and � = T �−1. Since � is symmetric by
construction, so is T �−1, and this is the necessary condition for the existence of holomorphic
theta vector. Here, in order f to be a Schwartz function, the imaginary part of T �−1 should
be positive.

In the case (ii), the consistency relation (28) is

C(�, I,Gt ) = (T , I )

⎛⎝�−1 0 0
0 I 0
0 0 Q−1

⎞⎠ . (30)

6



J. Phys. A: Math. Theor. 41 (2008) 105201 Ee Chang-Young and H Kim

The above relation can be understood as linear maps from C
2p+q → C

p → C
p+ q

2 for the left
and from C

2p+q → C
2p+q → C

p+ q

2 for the right. The right linear map is surjective since both
(T , I ) and ⎛⎝�−1 0 0

0 I 0
0 0 Q−1

⎞⎠
are of full rank, while the left linear map cannot be surjective since it is maximally of rank p
which is strictly smaller than p + q

2 .
In the case (iii), the consistency relation (28) becomes

(T , I )(Q−1)

⎛⎜⎝−2π in1

...

−2π inq

⎞⎟⎠ f = 0. (31)

If one can let (T , I )(Q−1) = F as defined in (23), where T and I are the q

2 × q

2 matrices and
Q is the q × q matrix, then the above condition can be written as(

q∑
l=1

Filnl

)
f (�n) = 0, for i = 1, . . . ,

q

2
. (32)

If f is a nontrivial solution, then
∑q

l=1Filnl = 0 for all i = 1, . . . ,
q

2 . Since Fil ∈ C, (0, . . . , 0)

is the only solution for �n. Namely, f can be nonzero only for �n = (0, . . . , 0), i.e., f is a
delta function at the origin. And (32), which is a re-phrasal of (21), tells us that f has a
non-vanishing solution only when the connection vanishes. In effect, one can say that the
holomorphic vector does not exist in this case, either.

Now we consider the changes of the above result in the general set-up. First, consider the
construction of the module from embeddings of the type M = R

p × Z
q where 2p + q = d.

Here again, we suppress the finite part for brevity. Let the embedding map be

� := (xi,j ), i = 1, . . . , 2p + 2q, j = 1, . . . , 2p + q. (33)

The operators Uj acting on the space E := S(Rp × Z
q) can be defined via Heisenberg

representation, and are given by equation (12) for more general values of xi,j given by the
above embedding.

For the theta vectors, equation (15) tells us that the matrix B is the inverse matrix of X̃ where
X̃ij = (xi,j ) for i, j = 1, . . . , 2p + q. Namely, the matrix X̃ is the upper (2p + q) × (2p + q)

square part of the matrix � and B is its inverse matrix:

B = X̃−1. (34)

For a general complex structure, equation (19) can be written as⎛⎜⎝ ∇1

...

∇d/2

⎞⎟⎠ = (
T1, T2

) ⎛⎜⎝∇1

...

∇d

⎞⎟⎠ , (35)

7
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where T1 and T2 are d
2 × d

2 complex matrices with d given by 2p + q. And the connection ∇
defined in (3) is given by (14):

⎛⎜⎝∇1

...

∇d

⎞⎟⎠ = (B)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2π is1

...

−2π isp
∂

∂s1

...
∂

∂sp

−2π in1

...

−2π inq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

where B is a (2p + q) × (2p + q) matrix defined by (34). Now, the condition for holomorphic
vector (21) becomes

(
T1, T2

)
(B)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2π is1

...

−2π isp
∂

∂s1

...
∂

∂sp

−2π in1

...

−2π inq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f = 0. (37)

To check the existence condition for the holomorphic vector, we let

(T1, T2)(B) := (A,C, F ), (38)

where A and C are the
(
p + q

2

) × p matrices and F is the
(
p + q

2

) × q matrix. Then the
holomorphic condition for f given by (25) is the same as in (27), and in the above notation,
we can write the following relation:

C(�, I,Gt ) = (A,C, F ) = (T1, T2)(B). (39)

�

Theorem 3. The existence of holomorphic vectors in the general embeddings is as follows:

(i) For p �= 0, q = 0, the unique solution is given by

� = (T1B12 + T2B22)
−1(T1B11 + T2B21),

where

B =
(

B11 B12

B21 B22

)
, Bi,j is the p × p matrix, (40)

with the following three conditions: (1) there should exist an inverse of the matrix
(T1B12 + T2B22), (2) the matrix (T1B12 + T2B22)

−1(T1B11 + T2B21) should be symmetric
and (3) Im((T1B12 + T2B22)

−1(T1B11 + T2B21)) > 0.

8
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(ii) For p �= 0, q �= 0, there does not exist holomorphic vector.
(iii) For p = 0, q �= 0, the only possible solution is the delta function at the origin.

Proof. In the case (i), the consistency relation (39) is reduced to

C(�, I) = (A,C) = (T1, T2)

(
B11 B12

B21 B22

)
= (T1B11 + T2B21, T1B12 + T2B22), (41)

where we write the matrix B in 2 × 2 block form with each block being a p × p matrix. Here,
� is given by

� = (T1B12 + T2B22)
−1(T1B11 + T2B21).

In order to have a holomorphic theta vector the following conditions should be satisfied:
(1) there should exist an inverse of the matrix (T1B12 + T2B22), (2) the matrix (T1B12 +
T2B22)

−1(T1B11 + T2B21) should be symmetric, since � is symmetric by construction, and (3)
Im((T1B12 + T2B22)

−1(T1B11 + T2B21)) > 0 in order f to be a Schwartz function.
In the case (ii), the consistency relation (30) becomes

C(�, I,Gt ) = (T1, T2)B. (42)

The above relation can be understood as before in terms of linear maps from C
2p+q → C

p →
C

p+ q

2 for the left, and from C
2p+q → C

2p+q → C
p+ q

2 for the right. The right linear map
is surjective since both (T1, T2) and B are of full rank, while the left linear map cannot be
surjective since it is maximally of rank p which is strictly smaller than p + q

2 as before.
In the case (iii), relation (31) becomes

(T1, T2)(B)

⎛⎜⎝−2π in1

...

−2π inq

⎞⎟⎠ f = 0. (43)

If one can let (T1, T2)B = F as defined in (38), where T1 and T2 are the q

2 × q

2 matrices and
B is the q × q matrix, then the above condition can be written as(

q∑
l=1

Filnl

)
f (�n) = 0, for i = 1, . . . ,

q

2
. (44)

In the same vein, should f be a nontrivial solution, then
∑q

l=1 Filnl = 0 for all i = 1, . . . ,
q

2
as before. Thus, f can be nonzero only for �n = (0, . . . , 0), and (44), a re-phrasal of (21), tells
us that f can be a non-vanishing solution only when the connection vanishes. Therefore, the
holomorphic vector does not exist in this case. �

The above analysis shows that one cannot have a holomorphic vector over totally
complexified T

d
θ in the embedding of M = R

p × Z
q with nonzero p and q. This can be

remedied by giving a complex structure only over the continuous part of the embedding space,
i.e., by giving a complex structure to the connection components over R

p × R
p∗. Now, we

implement this as follows:⎛⎜⎝∇1

...

∇p

⎞⎟⎠ = (
T1, T2

) ⎛⎜⎝ ∇1

...

∇2p

⎞⎟⎠ ,

(45)
∇p+1 = ∇2p+1,

...

∇p+q = ∇2p+q,

9
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where T1 and T2 are the p×p complex matrices and give the complex structure over R
p ×R

p∗.
Then, the holomorphic vector over this part satisfies⎛⎜⎝∇1

...

∇p

⎞⎟⎠ f (�s, �n) = 0, (46)

whose solution is given by

f (�s, �n) = exp

⎛⎝π i
p∑

j,k=1

sj�jksk

⎞⎠ g(�n).

Since f belongs to S(Rp)⊗S(Zq), g(�n) belongs to S(Zq) and has to be a Schwartz function.
Here, we choose a simple Schwartz function for g(�n), and write the function f (�s, �n) as

f (�s, �n) = exp

⎡⎣π i
p∑

j,k=1

sj�jksk − π

2

q

2∑
i=1

(
n2

i + n2
q

2 +i

)⎤⎦ , (47)

where Im � > 0.

3.2. Quantum theta functions

Before considering the quantum theta function, we first review the algebra-valued inner product
on a bimodule after Rieffel [6]. Let M be any locally compact Abelian group, and M̂ be its
dual group, and let G ≡ M × M̂ . Let π be a representation of G on L2(M) such that

πxπy = α(x, y)πx+y = α(x, y)α(y, x)πyπx for x, y ∈ G, (48)

where α is a map α : G × G → C
∗ satisfying

α(x, y) = α(y, x)−1, α(x1 + x2, y) = α(x1, y)α(x2, y),

and α denotes the complex conjugation of α. Let D be a discrete subgroup of G. We
define S(D) as the space of Schwartz functions on D. For � ∈ S(D), it can be expressed as
� = ∑

w∈D �(w)eD,α(w) where eD,α(w) is a delta function with support at w and obeys the
following relation:

eD,α(w1)eD,α(w2) = α(w1, w2)eD,α(w1 + w2). (49)

For Schwartz functions f, g ∈ S(M), the algebra (S(D)) valued inner product is defined
as

D〈f, g〉 ≡
∑
w∈D

D〈f, g〉(w)eD,α(w), (50)

where

D〈f, g〉(w) = 〈f, πwg〉.
Here, the scalar product of the type 〈f, p〉 above with f, p ∈ L2(M) denotes the following:

〈f, p〉 =
∫

f (x1)p(x1)dµx1 for x = (x1, x2) ∈ M × M̂, (51)

where µx1 represents the Haar measure on M and p(x1) denotes the complex conjugation of
p(x1). The S(D)-valued inner product can be represented as

D〈f, g〉 =
∑
w∈D

〈f, πwg〉eD,α(w). (52)

10
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For � ∈ S(D) and f ∈ S(M), then π(�)f ∈ S(M) can be written as [6]

(π(�)f )(m) =
∑
w∈D

�(w)(πwf )(m), (53)

where m ∈ M,w ∈ D ⊂ M × M̂ .
Now, we consider the Manin’s quantum theta function �D [3–5] for the embedding into

vector space. In [5], the quantum theta function was defined via algebra-valued inner product
up to a constant factor [12],

D〈f, f 〉 ∼ �D, (54)

where f used in the Manin’s construction [5] was a simple Gaussian theta vector

f = eπ ixt
1T x1 , x1 ∈ M. (55)

Here, T is a complex structure given by a complex skew-symmetric matrix. With a given
complex structure T, a complex variable x ∈ C

p can be introduced via

x ≡ T x1 + x2, (56)

where x = (x1, x2) ∈ M × M̂ .
Based on the defining concept for the quantum theta function (54), one can define the

quantum theta function �D in the noncommutative T
2p case as

D〈f, f 〉 = 1√
2p det(Im T )

�D, (57)

where f is given by (55) and T corresponds to � in (47). According to (50), the S(D)-valued
inner product (57) can be written as

D〈f, f 〉 =
∑
h∈D

〈f, πhf 〉eD,α(h). (58)

In [5], Manin showed that the quantum theta function defined in (57) is given by

�D =
∑
h∈D

e− π
2 H(h,h)eD,α(h), (59)

where

H(g, h) ≡ gt (Im T )−1h∗

with h∗ = T h1 + h2 denoting the complex conjugate of h. At the same time, it also satisfies a
quantum version of the translation action for classical theta functions [3]:

∀g ∈ D,CgeD,α(g)x∗
g (�D) = �D, (60)

where Cg is defined by

Cg = e− π
2 H(g,g)

and the action of x∗
g , ‘quantum translation’, is given by

x∗
g (eD,α(h)) = e−πH(g,h)eD,α(h). (61)

In [3], Manin has also required that the factor Cg, g ∈ D appearing in the quantum translation
x∗

g has to satisfy the following relation under a combination of quantum translations for
consistency:

Cg+h

CgCh

= Tg(h)α(g, h). (62)

11
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Here, α(g, h) is the cocycle appearing in (49) and Tg(h) is a generalized expression of the
factor that appears by quantum translation:

x∗
g (eD,α(h)) ≡ Tg(h)eD,α(h). (63)

The proof of the functional relation (60) in this embedding case with quantum translation (61)
was shown in [5].

We now construct the quantum theta function for the general embedding of R
p × Z

q for
2p + q = d, using the function obtained in the previous section. With the function f (�s, �n)

given by (47), we evaluate the quantum theta function a la Manin:
1√

2p det(Im �)
�̂D = D〈f, f 〉, (64)

where � is a ‘complex structure’ over the continuous part of the embedding space, as is
determined in the previous section including the noncommutativity parameters. We will see
that the quantum theta function obtained in this way also satisfies the Manin-type functional
relation with the modified quantum translation

∀g ∈ D, ĈgeD,α(g)x̂∗
g (�̂D) = �̂D, (65)

where Ĉg, x̂
∗
g are to be defined below.

To evaluate the quantum theta function (64), we calculate the scalar product inside the
summation in (58) first. For that we first write the action of the operator πh on f omitting the
arrow which denotes a vector for brevity:

πhf (s, n) = e2π i(wh2·s+r·n)+π i(wh1·wh2+m·r)f (s + wh1, n + m), (66)

where h ∈ D is given by

h = (wh1, wh2,m, r) ∈ R
p × R

p∗ × Z
q × T

q .

Then,

〈f, πhf 〉 =
∑
n∈Z

q

∫
R

p

ds e
π[ist�s− 1

2

∑ q
2
i=1(n

2
i +n2

q
2 +i

)]
eπ[−2i(wh2·s+r·n)−i(wh1·wh2+m·r)]

× e
π[−i(s+wh1)

t�(s+wh1)− 1
2

∑ q
2
i=1((ni+mi)

2+(n q
2 +i

+m q
2 +i

)2)]

=
∫

R
p

ds e−2π[st (Im �)s+iwh
t
1�s+iwh2·s]−iπ[wh

t
1�wh1+wh1·wh2]

× e
− π

2

∑ q
2
i=1(m

2
i +m2

q
2 +i

)−π im·r ∑
n∈Z

q

e
− π

2

∑ q
2
i=1(n

2
i +n2

q
2 +i

)+2π i[n·(−r+ im
2 )]

=
q∏

j=1

brj ,mj

∫
R

p

ds e−2π[st (Im �)s+iwh
t
1�s+iwh2·s]−iπ[wh

t
1�wh1+wh1·wh2], (67)

where

brj ,mj
= e− π

2 m2
j −π imj rj θ

(
τ = i, z = −rj +

imj

2

)
, j = 1, . . . , q. (68)

Here, θ(τ, z) is the classical theta function defined by

θ(τ, z) =
∑
n∈Z

eπ iτn2+2π inz, for τ, z ∈ C.

The integral in (67) is the same as that appeared in [5] and is given by
1√

2p det(Im �)
e− π

2 H(wh,wh). (69)

Thus we obtain the following result.

12
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Proposition 4. The quantum theta function �̂D obtained from f in (47) is given by

�̂D =
∑
h∈D

b̃h e− π
2 H(wh,wh)eD,α(h), (70)

where

b̃h =
q∏

j=1

brj ,mj
(71)

with brj ,mj
given in (68).

The above quantum theta function satisfy the Manin’s functional relation under ‘modified
quantum translation’ (65), and we get the following theorem.

Theorem 5
∀g ∈ D, ĈgeD,α(g)x̂∗

g (�̂D) = �̂D,

and the consistency condition (62) for Ĉg . The above relation is satisfied if we assign

Ĉg = b̃g e− π
2 H(wg,wg), (72)

and x̂∗
g is defined by

x̂∗
g (eD,α(h)) = T̂g(h)eD,α(h) (73)

with

T̂g(h) = Ĉg+h

ĈgĈhα(g, h)
. (74)

Proof. Now, it is easy to show relation (65):

ĈgeD,α(g)x̂∗
g (�̂D) = ĈgeD,α(g)x̂∗

g

(∑
h∈D

b̃h e− π
2 H(wh,wh)eD,α(h)

)

= ĈgeD,α(g)x̂∗
g

(∑
h∈D

ĈheD,α(h)

)
=

∑
h∈D

ĈgĈheD,α(g)T̂g(h)eD,α(h)

=
∑
h∈D

Ĉg+heD,α(g + h) = �̂D,

where we used relation (72) in the second step, and relation (74) together with the cocycle
condition (49) in the last step. �

Remark. Here we note that the quantum translations are not additive in this case:

x̂∗
g1

· x̂∗
g2

(eD,α(h)) �= x̂∗
g1+g2

(eD,α(h)). (75)

On the other hand, the quantum translations in the Manin’s case (x∗
g ) (61) are additive:

x∗
g1

· x∗
g2

(eD,α(h)) = x∗
g1+g2

(eD,α(h)). (76)
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4. Conclusion

In this paper, we study the theta vector and the corresponding quantum theta function for
noncommutative tori with general embeddings.

While the theta vector exists in the embedding into the vector space case (Rp type), there
does not exist fully a holomorphic theta vector in the embedding into the lattice case (Zq

type). We construct a module which consists of holomorphic vectors for the vector space part
and a plain Schwartz function for the lattice part in the case of mixed embedding (Rp × Z

q

type). Manin has constructed the quantum theta functions only with holomorphic modules
with embedding into vector space. And, it was not clear whether the partially holomorphic
modules such as ours for mixed embeddings would yield the quantum theta functions that
satisfy the Manin’s requirement. The answer turns out to be yes.

There is one difference between the two types of quantum theta functions, Manin’s and
ours. In the Manin’s quantum theta function, two consecutive ‘quantum translations’ are
additive, while those of ours are not. This non-additivity is allowed by the consistency
condition for the cocycle and quantum translation, (74).

In conclusion, we have shown that the quantum theta functions on noncommutative tori
that satisfy the Manin’s requirement can be constructed with any choice of the following
embeddings: (1) into vector space times lattice, (2) into vector space and (3) into lattice. Our
result for the cases (1) and (3) can be directly extended to the embeddings that include finite
groups as was done in the Manin’s work [5] for the case (2).
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